Transcomputation

Dr James Anderson FBCS CITP CSci

Agenda

- Discrete Logic
- Sets and Antinomies

• Physcial conformance of knowledge

Warning

 Although all of the information in this lecture has been discussed in scientific meetings, it has not all been published so there may be serious mistakes in it Logic

Logic

• What are all the combinations of the symbols $\{FT\}$?

Logic

- $\{F\}$ meaning False, F
- $\{T\}$ meaning True, T
- {FT} meaning Contradiction, C
- {} meaning Gap, G

Puzzle

- Sketch all of the points where it is true that they are inside the circle
- Sketch all of the points where it is false that they are inside the circle
- What is the truth value of the boundary?
- What things have the gap truth value and where are they?

Not

And

&	F	Т	С	G
F	F	F	С	G
Т	F	Т	С	G
С	С	С	С	G
G	G	G	G	G

Logical connectives

- All Boolean logical connectives can be obtained from combinations of Not and And
- All digital electronic circuits can be obtained from NAND (Not And) gates
- What happens if we totalise Boolean logic?

Sets and antinomies

Naive-Set Theory

- The set $\{x \mid \phi(x)\}$ is defined by the class $\phi(x)$
- But classes are more general than sets so we are not surprised that naive set-theory is inconsistent
- The solution is to accept all of the notation and operations of naive set-theory as a class theory

Class Theory

- $\{x \mid \phi(x)\}$ is syntactic sugar for the class $\phi(x)$
- All other notations and operations of set theory are now generalised to classes

Interchangeability

• Interchangeability (\doteq) is an equivalence over all classes: $x \doteq y \Leftrightarrow x \in \{y\}$

Universes

- Universal Class (U): $U \doteq \{x \mid T\}$
- Universal Set (V): $V = \{x | x = x\}$
- Universal Antinomy (W): $W \doteq \{x \mid x \neq x\}$
- U is partitioned by V and W

Russell Class

• $R_U \doteq \{x_1 \mid x_2 \notin x_3\}$ with $x_1 \doteq x_2 \doteq x_3$

Russell Class $R_U \doteq \{x_1 \mid x_2 \notin x_3\}$

- Suppose $R_U \doteq x_1$
- That is $R_U \in R_U$
- But $R_U \notin R_U$ because $x_2 \notin x_3$
- So $R_U \in R_U \Rightarrow R_U \notin R_U$

Russell Class $R_U \doteq \{x_1 \mid x_2 \notin x_3\}$

- Suppose $R_U \doteq x_2 \doteq x_3$
- That is $R_U \notin R_U$
- But $R_U \in R_U$ because x_1
- So $R_U \notin R_U \Rightarrow R_U \in R_U$

Russell Paradox

 Combining implications we have a bi-implication that is the classical Russell Paradox:

•
$$R_U \in R_U \Leftrightarrow R_U \notin R_U$$

 Russell assumed that the contradiction in the paradox proves that the set does not exist but it does exist, for us, as a class and we can work out its properties

Extensionality

• Axiom of Extensionality:

$$(x = y) \Longrightarrow (z \in x \Longrightarrow z \in y)$$

• Taking
$$x = y = z = R_U$$

- Gives $(R_U = R_U) \Rightarrow (R_U \in R_U \Rightarrow R_U \in R_U)$
- But $R_U \in R_U \Leftrightarrow R_U \notin R_U$
- So $R_U \neq R_U$

Russell Antinomy

• $R_W \doteq R_U$

Russell Set

• $R_V = R_W \cap V$

Russell Truisms

- $R_W \in R_W$ is a gap
- $R_W \notin R_V$
- $R_V \in R_W$
- $R_V \notin R_V$

Classes

- Classes are defined in terms of continuous objects from which discrete objects can be drawn
- Objects can be used as symbols so that classes can, theoretically, be written in a continuous language
- But the physical properties of our universe limit what can be written
- Is our universe discrete or continuous?

Knowledge

Knowledge

- Knowledge can be expressed in digital or discrete systems
- But knowledge is embedded in the physcial universe so must conform to physics
- Von Neumann computers make the physically impossible assumption that information can travel faster than light
- Hypothesis: the more direct the conformance, the more efficient the computation

Reading

- Transreal arithmetisation of logic
- Trans-Boolean logic

Conclusion

- We need a total logic that covers at least the concepts: True, False, Contradiction, Gap
- We need to work with at least classes of both sets and antinomies, not just sets
- Knowledge may be discrete or continuous but it must conform to the physical arrangement of the universe